HUNTING THE FIRST GALAXIES

Steven Finkelstein
Texas A&M University
WHY STUDY THE DISTANT UNIVERSE?

- Why do we want to study galaxies in the distant universe?
 - When and how did the Hubble sequence assemble?
 - The Hubble sequence is in place by $z = 1-2$, but when we look further back, galaxies appear very different.
 - When did the first galaxies form?
 - We keep looking further back, and we keep finding galaxies.
 - How does the chemical evolution of the universe proceed?
 - Will we ever find Population III stars?

- These are just some of the most fundamental questions in astrophysics today.
I’ll start with a review of high redshift galaxies, including our current knowledge.

Focus on one goal for the type of high-z science I’d like to do with GMT:

- Confirm the redshifts of $z > 6$ galaxies (and constrain reionization).

- This goal requires a large field-of-view, multi-object, moderate resolution spectrograph in the near-infrared (i.e., NIRMOS).
• Lyman break galaxies: Selected on the basis of a spectral break at 912/1216 Å due to IGM absorption.

• Tens of thousands discovered over $3 < z < 6$; are heavily star forming, but somewhat evolved:
 • SFR \sim 10’s of M_\odot/yr; $M \sim 10^{10} M_\odot$ (at L^*), $t \sim 100$’s of Myr, $A_V \sim 0.2$ - 1.0 mag.

• Lyman alpha emitters (LAEs): Selected on the basis of a bright Lyα emission line, typically via narrowband imaging.

• 100’s/1000’s discovered - originally thought to be a hallmark of the first galaxies in formation.

• Narrowband selected LAEs are less evolved; SFR \sim 1-10 M_\odot/yr; $M \sim 10^{8-9} M_\odot$, $t \sim 1$-100 Myr, $A_V \sim 0$ - 0.2 mag.

• The presence of dust in many LAEs implies they are not the first galaxies.
Galaxies at $z < 6$ do not appear to represent the first galaxies.

Will pushing to higher redshifts find them?

At $z \geq 7$, the Lyman break shifts past 1 μm, where sky emission causes difficulties.

Ground-based near-infrared broadband studies have had difficulty discovering large samples of LBGs (e.g., Ouchi+09, Castellano+10).

LAEs could be easier to find by placing ultra-narrowband filters between sky lines: gaps corresponding to $z = 7.7$ & 8.8.

Many ongoing or planned projects: DaZle, ELVIS, Dark Ages Survey.

All only one-band detections.
We’ve gotten to the point where ground-based selection is difficult.

Thanks to the IR channel of WFC3, we can push to $z > 7$.

- HUDF09: 192 orbits in the HUDF plus two parallel fields (PI Illingworth).
- ERS: 10x2 WFC3 pointings in GOODS-S (WFC3 SOC).
- CANDELS: ~800 WFC3 orbits over GOODS-S/N, COSMOS, EGS and UDS (PI Faber & Ferguson).

Currently, the HUDF09 and ERS data has led to the first discovery of large samples of $z \sim 7$ (z'-drop) and $z \sim 8$ (Y-drop) candidate galaxies (e.g., Bouwens et al. 2010abc; Oesch et al. 2010; Finkelstein et al. 2010; McLure et al. 2010, 2011).
• We followed this up with our own study in the HUDF (Finkelstein et al. 2010).

• Goal: to study galaxy stellar population properties.

• Sample selected via photometric redshifts.
Examined the rest-frame UV colors.

- The average color of all $z \sim 7$ galaxies is significantly ($> 4\sigma$) bluer than typical local starbursts.
 - Likely dominated by reduced extinction, but could also be lower metallicities.
- The average color of the faintest galaxies is $\beta = -3!!$
 - However, the uncertainties are large and the sample is small, thus these galaxies are consistent with very blue local galaxies (i.e., NGC1705).

- We studied the stellar masses of these galaxies via SED fitting, and found that they continue the decline in typical mass first seen at lower redshifts.
 - Galaxies at $z > 7$ are more similar to LAEs than LBGs at $z < 6$.

Monday, March 14, 2011
Examined the rest-frame UV colors.

- The average color of all galaxies is significantly (> 4σ) bluer than typical local starbursts.
 - Likely dominated by reduced extinction, but could also be lower metallicities.

- The average color of the faintest galaxies is ~ -3!
 - However, the uncertainties are large and the sample is small, thus these galaxies are consistent with very blue local galaxies (i.e., NGC1705).

We studied the stellar masses of these galaxies via SED fitting, and found that they continue the decline in typical mass first seen at lower redshifts.

- Galaxies at $z > 7$ are more similar to LAEs than LBGs at $z < 6$.

Are these the first galaxies?

Likely not, but they look to be less evolved than even galaxies at $z \sim 6$, thus we appear to be getting closer.
By adding up the rest-UV fluxes of our objects, we examine how they would contribute to the ionizing budget necessary for reionization.

- Circles are observed galaxies, triangles are corrected for galaxies below our survey limit.
- If one assumes low clumping factors (Pawlik+09; Finlator+09), then the observed galaxy populations can sustain reionization for large escape fractions (~ 50%).
 - Might be reasonable given escape fraction trends from z=1 - 3 (Siana+10).
THE NEXT STEPS...

- Currently published $z > 7$ samples range from $\sim 5 - 100$ galaxies.

- CANDELS will discover > 500 $z > 7$ galaxies, greatly adding to our knowledge of the $z > 7$ universe.

- However, these galaxies all remain candidates until spectroscopically confirmed.

- Currently, we only have estimates of the contamination fraction and redshift distribution of these galaxy samples.

- Both contribute to the uncertainties on the luminosity functions, and thus our ability to use them to constrain reionization.
WE REQUIRE SPECTROSCOPY!

- The most promising method to spectroscopically confirm these galaxies resides with detecting Lyα emission.
 - The observed star-forming properties of galaxy candidates at \(z > 7 \) in the HUDF implies that most have intrinsic Lyα fluxes \(\approx 2 \times 10^{-18} \text{ erg s}^{-1} \text{ cm}^{-2} \).
 - Nearly impossible with current telescopes and instrumentation.
 - All but a few NIR spectrographs are limited to single-objects observations (MMIRS & MOIRCS; soon MOSFIRE, FMOS and KMOS).
 - However, if the IGM becomes more neutral from \(z=6-7 \), then the Lyα EW distribution will change, and Lyα could be even harder to see.
 - Spectroscopic observations will thus place strong constraints on the neutral fraction of the IGM.
CURRENT SPECTROSCOPIC RESULTS

- Of course, the galaxies in the HUDF are from a small volume, and so are mostly too faint for current observatories.
 - Groups have tried to confirm brighter $z > 7$ galaxies from ground-based and HST surveys.
 - We currently know of 3 galaxies with $z_{\text{spec}} > 7$:
 - $z=7.01, 7.11$ (Vanzella+11).
 - $\text{EW}_{\text{rest}} = 64, 50$ Å
 - $z=8.56$ (Lehnert+10).
 - $\text{EW}_{\text{rest}} = 200$ Å!!
 - Fontana et al. (2010) observed 7 $z \sim 7$ galaxies, and only detected one (at $z=6.97$), leading them to the conclusion that the neutral fraction has significantly evolved.
WHAT CAN GMT DO?

- The Near-Infrared Multi-Object Spectrograph (NIRMOS) will be a key instrument to unlock the high redshift universe.

- Current telescopes, even with upcoming multi-object NIR spectrographs, will be unable to spectroscopically confirm the bulk of the $z > 7$ galaxy population.

- Take the Lehnert et al. galaxy as an example.
 - $f_{\text{Ly}\alpha} = 6 \times 10^{-18}$ in 15 hours with SINFONI on the VLT!
 - In the same exposure time, NIRMOS can obtain a $\sim 100\sigma$ detection.
 - Can reach this line flux at 5σ in just a few minutes.
WHAT CAN GMT DO?

- What about fainter galaxies?
 - Let’s examine an observing scenario for the year 2019...
 - CANDELS has been completed, and has discovered numerous $z \sim 7 - 8$ galaxy candidates, as promised.

I’d like to follow-up CANDELS $z > 7$ galaxy candidates with the GMT!
Only the brightest few $z > 7$ galaxies will be confirmed with 8-10m class telescopes, thus conclusions on reionization, etc., will be tenuous.

- CANDELS should find ~ 240 galaxies at $z_{\text{phot}} > 6.5$ in GOODS-S.
WHAT CAN GMT DO?

- Only the brightest few $z > 7$ galaxies will be confirmed with 8-10m class telescopes, thus conclusions on reionization, etc., will be tenuous.

- CANDELS should find ~ 240 galaxies at $z_{\text{phot}} > 6.5$ in GOODS-S.

- Using the empirically derived $z \sim 7$ Lyα EW predictions of Stark et al. (2011) along with the “observed” magnitudes and calculated photo-z’s, we can predict what the Lyα line flux distribution should be for this sample.
Distribution peaks at $f_{\text{Ly}a} \sim 5 \times 10^{-18}$.

Current telescopes can only efficiently reach 10^{-17} (at 5σ).

- Miss the bulk of the galaxy population.
Distribution peaks at $f_{\text{Ly}\alpha} \sim 5 \times 10^{-18}$.

Current telescopes can only efficiently reach 10^{-17} (at 5σ).

- Miss the bulk of the galaxy population.

In just ~ an hour, NIRMOS will reach $\sim 1 \times 10^{-18}$ (at 5σ).

- Should detect > 90% of the covered CANDELS galaxy sample.

Want to be more conservative?

- Get to 5×10^{-19} in ~ 4 hours.
Distribution peaks at $f_{Ly} \sim 5 \times 10^{-18}$.

Current telescopes can only efficiently reach 10^{-17} (at 5 μm).

Miss the bulk of the galaxy population.

In just ~ an hour, NIRMOS will reach $\sim 1 \times 10^{-18}$ (at 5 μm).

Should detect > 90% of the covered CANDELS galaxy sample.

Want to be more conservative?

Get to 5×10^{-19} in ~ 4 hours.

WHAT CAN GMT DO?

One night on GMT with NIRMOS:

Four masks, ~ 1-1.5 hours per mask.

Yield: ~ 150-200 spectroscopically confirmed $z \sim 7-8$ galaxies.
Distribution peaks at $f_{\text{Ly} !} \approx 5 \times 10^{-18}$.

Current telescopes can only efficiently reach 10^{-17} (at $5\#$).

Miss the bulk of the galaxy population.

In just ~ an hour, NIRMOS will reach $\approx 1 \times 10^{-18}$ (at $5\#$).

Should detect > 90% of the covered CANDELS galaxy sample.

Want to be more conservative?

Get to 5×10^{-19} in ~ 4 hours.

WHAT CAN GMT DO?

One night on GMT with NIRMOS:

- Four masks, ~ 1-1.5 hours per mask.
- Yield: ~ 150-200 spectroscopically confirmed $z \sim 7-8$ galaxies

Or many more w/ MANIFEST (provided fibers don’t cause a significant throughput hit)
CAVEATS...

- This scenario assumes that the IGM is primarily ionized.
 - If it is neutral it could substantially attenuate the Lyα fluxes.
 - Unless the majority of galaxies are able to ionize their surroundings, or the majority of escaping Lyα is redshifted due to outflows.
 - This is where it gets interesting...
 - What if we see less galaxies?
 - Then we’ll have the first hard constraints on the rising neutral fraction in the IGM!
CAVEATS...

- This scenario assumes that the IGM is primarily ionized.
- If it is neutral it could substantially attenuate the Lyα fluxes.
- Unless the majority of galaxies are able to ionize their surroundings, or the majority of escaping Lyα is redshifted due to outflows.
- What if we see less galaxies?

This is where it gets interesting...

- Then we have the first hard constraints on the rising neutral fraction in the IGM.

Distribution of expected number of galaxies using the predicted $z \sim 7$ equivalent width distribution.

$N_{\text{gal}} = 104 \pm 17$
What about as-yet undiscovered galaxies?

- JWST should discover galaxies out to \(z \sim 12 \) and possibly higher (if they exist).
- Assuming factor of 3 fainter intrinsically (\(d_L \)), and another factor of 2 fainter due to an increasingly neutral IGM.
 - \(f_{\text{Ly}a} \sim 2 \times 10^{-19} \)
 - \(5\sigma \) achievable in \(\sim 20 \) hours.
- Beats both JWST \(R \sim 100 \) and \(R \sim 1000 \) modes.
CONCLUSIONS

- Current telescopes and NIR spectrographs only have the ability to spectroscopically confirm the very few brightest galaxies at $z > 7$.
 - And they do it very inefficiently.
- NIRMOS on the GMT will allow the first large scale spectroscopic surveys in the reionization epoch.
 - Crucial to trace the evolution of the neutral fraction in the IGM
 - As well as the contamination and redshift distribution, which are important for just about everything we study (luminosity function, colors, etc.).
- NIRMOS will also allow insight into these most distant of galaxies by studying similar objects at lower redshift via rest-frame optical emission lines.
 - Again, current instrumentation is not sufficient to build a large statistical sample, thus we will have to wait for the GMT, and hopefully NIRMOS.
• Broadly, $z\sim7-8$ galaxies have more in common with $z = 2-6$ LAEs than LBGs.

• Can learn about $z \sim 2-3$ LAEs via rest-frame optical emission lines.

• We have begun doing this with $z \sim 2$ galaxies discovered in the HETDEX pilot survey.

• These LAEs appear very low metallicity.
These observations were very time consuming; one night on Keck with NIRSPEC to study three galaxies (only detecting two).
And, the two we did detect were very bright in Lyα ($3 - 6X L^*_{Ly\alpha}$).
1.5 hr with Keck/NIRSPEC

1.5 hr with GMT/NIRMOS

6 $L^*_{Ly\alpha}$
0.2 $L^*_{\text{Ly} \alpha}$ in 12 hours.
Not only will GMT/NIRMOS allow much fainter flux limits, but the multiplexing capability will allow the construction of large statistical samples of LAEs/LBGs (or whatever you want to study!).